Hur farlig är Joniserande strålning?

Många människor känner oro för joniserande strålning. Det är framför allt inom sjukvården som de medvetet kommer i kontakt med strålning, och det är till sjukvårdens personal som de vänder sig med sina frågor.

Vad är joniserande strålning?

All strålning är bärare av energi. När strålningen träffar materia, t ex levande väpnad, överförs en del av energin till materiens atomer och molekyler.

Är strålningen tillräckligt energisk kan den slita loss elektroner från atomerna (figur 1). Detta kallas jonisation, och vi talar då om joniserande strålning.

Joniserande strålning sänds ut när radioaktiva atomkärnor sönderfaller.

Den bildas också vid kärnreaktioner, t ex dem som pågår i solen. Och den kan framställas i olika apparater, t ex röntgen- aggregat.

Våra tidiga kontakter med strålning

Materien var till stor del radioaktiv när den en gång bildades för borttåt tio miljarder år sedan. Men de flesta kärnslag som finns i naturen har för länge sedan hunnit avge sin överskottsenergi och blivit stabila.

En del är dock fortfarande radioaktiva och fortsätter att avge strålning som ett minne från skapelseprocessen, se fakturad 1.

Också från rymden nås vi hela tiden av joniserande strålning.

Allt liv på jorden har alltså utvecklats i en naturlig strålningsmiljö.

Först på 1890-talet kom människan underfund med detta. Då upptäcktes både röntgenstrålningen och radioaktiviteten, och människan började genast ta båda i sin tjänst.

Vad man inte visste då var att strålning också kan vara farlig. Många av pionjärerna inom medicin och forskning fick strålskadare och cancer genom oförutsiktta uppmärksamålade med strålning.

ICRP

Men man lärde sig så småningom, och satte upp regler. Redan 1928 grundades Internationella strålskyddskommissionen, ICRP. Den samlar in erfarenheter av hur strålning påverkar vår hälsa.

Utifrån dessa kunskap bedömer ICRP riskerna och rekommenderar gränsvärden.

Vår hantering av strålning underlättas av att mätmetoderna är oerhört känsliga – man kan t ex-mäta enskilda atomkärnors sönderfall. Denna känslighet kan ge fel inträffat om strålningsens farlighet.

Betasstrålning

De vanligaste strålslagen är alfa-, beta-, gamma- och röntgenstrålning.

Alfastrålning består av relativt stora partiklar. Den avges av vissa, oftast tunga, radioaktiva ämnen, t ex uran, radium, radon och plutonium.

På grund av sin storlek och sin elektriska laddning stoppas alfa-partiklar snabbt upp när de träffar ett föremål. I luft är räckvidden bara några centimeter. Ett tunn papper räcker för att stoppa dem.

Om strålningen träffar en oskyddad människokropp får den inte träna igenom hudens yttersta skikt av döda celler och gör då ingen skada.

Ett rent alfastrałande ämne blir där- för skadligt först när det kommer in i kroppen genom förtäring eller inandning. Lokalt kan strålningen då göra stor skada.

De vanligaste strålslagen är alfa-, beta-, gamma- och röntgenstrålning.

Gammavisa strålning är elek tromagnetisk strålning, besläktad med radiovågor och synligt ljus men med mycket högre frekvens.

I allmänhet har gammastrålning högre frekvens och energi än röntgenstrålning, men gränsen är flytande.

Skillnaden ligger istället i strålningens ursprung: medan gammastrålning härstammar från förändringar i atomkärnan, uppstår röntgenstrålning genom utläggningar i atomernas elektronfältrum eller genom uppbromsning av fria elektro

Gammastrålning har lång räckvidd och tar sig lätt igenom levande vävnad. För att stoppa den kan det behövas flera
centimeter bly, decimeterjock betong eller flera meter vatten. För den röntgenstrålning som används inom sjukvården räcker det oftast med någon millimeter bly.

Inget av de vanliga strålslagen gör att den som bestrålas själv blir radioaktiv. En annan sak är naturligtvis att det i vissa situationer kan finnas risk för nedsmutsning med radioaktiva ämnen (kontaminering).

Stråldos är måttet på skadlighet

Det är en allmän princip inom medicinen att skadligheten beror av dosen. Det gäller också för joniserande strålning, se faktaruta 2.

Gray

Måttet på dos är den energi som strålningen avsätter per kilo kroppsväv. Detta kallas "absorberad dos", och enheten är "gray".

Men absorberad dos är inget entydigt mått på skadlighet. Skadligheten beror också av vilket slags strålning det rör sig om.

En gray av alfastrålning är 20 gånger skadligare än en gray av beta- eller gammastrålning. Vi säger att alfastrålning har viktningfaktorn 20.

För att slippa hålla reda på vilka strålslag det handlar om vid en bestrålning, multiplicerar man den absorberade dosen med viktningfaktorn för det aktuella strålslaget.

Man får då den *ekvivalenta dosen*, som är ett mera entydigt mått på skadligheten.

Sievert

Den ekvivalenta dosen är vad vi i allmänhet menar när vi talar om stråldos. Den uttrycks i enheten sievert.

För både beta- och gammastrålning är viktningfaktorn 1, så i det fallet är "gray" och "sievert" detsamma.

En sievert är en mycket stor stråldos, som få människor blir utsatta för. Tusendar av en sievert är mycket vanligare.

Därför används oftast enheten millisievert (figur 2).

I medicinska sammanhang är bestrålningen oftast begränsad till en viss kroppsdel eller ett organ.

Risken med bestrålningen är då ge-

![Figur 2.](image)

![Figur 3.](image)

Figur 3. Organdos räknas om till effektiv helkroppsdos med hjälp av en omräkningsfaktor som är mindre än 1 och som beror av organets strålningskänslighet.

![Text](image)

Om organdosen till effektiv helkroppsdos (sk effektiv dos). Omräkningsfaktorn, som är mindre än 1, beror av det bestrålade organets känslighet (figur 3).

När vi i fortsättningen anger doser menar vi effektiva helkroppsdoser.
Vad är "becquerel"?

Stråldosen är alltså den störhet som talar om hur skadlig en bestrålning är och enheten är "siyvert".

En radioaktiv strålkälla karakteriseras av sin aktivitet, som anges med enheten becquerel.

En becquerel innebär att en radioaktiv atomkärna sönderfaller per sekund.

Becquereltäta ensamt säger ingenting om dosen och skadligheten: man måste också veta vilket radioaktivt ämne det gäller, och om och hur dess strålning kan nå människan.

Becquereltal är ofta mycket stora efter som det finns så många atomer även en i liten mängd materia.

Ett exempel: Om man påstår att det just skett ett radioaktivt utsläpp på 20 miljoner becquerel i centrala Stockholm, så låter det otäckt.

Men det är vad som sker när 5 000 åskådare strömmar ut från Råsunda fotbollsstadion. Varje människos kropp innehäller nämligen det naturligt radioaktiva ämnet kalium-40, ungefär 4 000 becquerel per person. Se även faktaruta 1.

Så visst skulle man kunna tala om ett radioaktivt utsläpp - men i detta fall skäligt ofarligt!

Försvarssystem

Under hela utvecklingshistorien har alltså DNA:utstått befann sig under attack. Högre former av liv hade varit omöjliga om det inte hade utvecklats ett effektivt försvarssystem mot de här angreppen.

Försvaret utgörs av ett batteri av enzym som kan leda upp och reparera skador i DNA-molekylen.

Det går i allmänhet snabbt. Lättare skador är reparera redan efter tio minuter. För den svåraste typen av skada tar det ungefär en timme.

Celldelningen kritisk

När en cell skall dela sig klumpas kromosomerna ihop och fördubblas. Om det inte DNA-reparationerna har lyckats, kan bitar av kromosomerna tappas bort vid delningen, eller brottsstycken kan kombineras ihop på fel sätt.

Oftast är sådana celler inte livsduliga. Men om de överlever kan de uppstå onormalt. De kan t ex så småningom ge upphov till cancer.

Om det är fråga om en könszell kan skadorna föras vidare till efteröfjande generationer.

Ju oftare cellerna i en vävnad delar sig, desto känsligare är vävnaden för strålning. Olika organ är därför olika strålningssäkra (jfr figur 3). Barn, som fortfarande växer, är mera känsliga än vuxna.

Cancerutörrer, som kännetecknas av ohämmad tillväxt, är känsligare än omgivande normal vävnad. Det är detta man drar nytta av vid strålbekämpning av cancer.

En viss stråldos som erhålls på en gång är i allmänhet skadligare än samma dos fördelad över lång tid, eftersom reparationsprocesserna blir mer belastade.

Hur skadar strålningen?

Varje cell i en individ innehåller det DNA som utgör en fullständig konstruktionsritning för just den individen.

Ändå är cellerna i olika organ helt olika, med olika funktioner och egen skap.

Det beror på att bara delar av arvsfömannan kommer till uttryck i olika sammanhang. Det är då inte förväntande att olika vävnader och organ skiljer sig mycket också i fråga om strålnings-känslighet.

Joniserande strålning vållar skada framför allt genom att den direkt eller indirekt bryter sönder DNA-molekylerna.

Liknande skador kan åstadkommas av kemiska ämnen, både naturliga och konstgjorda, av virus eller av ultraviolett ljus.

Akuta effekter

För att mycket höga stråldoser dör så många celler att de mest drabbade organen slutar att fungera. Symptomen uppträder då snabbt, och vi talar om akuta effekter.

Det finns en tröskel för sådana skador, som ligger kring 1 000 millisievert om bestrålningen sker på en gång och över hela kroppen.

Det är i första hand de blodbildande organen (den röda bennäringen) som slås ut, vilket först drabbar immunförsvar.

Den däremot känsligaste vävnaden är tarmslämmans. (Dess kraftiga försökningskompensationer med snabb celldelning.)

Vid 3 000 millisievert finns en påtaglig risk att dö i akut strålsjuka, och över 6 000 mSv är chansen att överleva ganska liten (figur 4).

Överlevnadschansen beror emellertid av möjligheterna att ge behandling.

Hur uppträder skador?

Under de hundra år som vi använt oss av strålning har vi lärt oss mycket om samhällen mellan stråldoser och hälsoeffekter.

Inte minst de medicinska tillämpningarna, som fick stor spridning redan på 1920-talet, har bidragit till vår kunskap.

Vår största kunskapsfält är emeller-

tid de människor som drabbades av atombombarna i Hiroshima och Nagasaki 1945. Det är den största befolkningen som utsatts för höga stråldoser och som man kunnat följa medicinskt under lång tid.

Gemensamt för alla de erfarenheter, då man klart har kunnat påvisa hälso-effekter, är att stråldoserna har varit mycket eller ganska höga – engangs-doser på bortät 100 millisievert och därefter. Vad har man då funnit?

Figur 4. Dödsfall i akut strålsjuka innehåller över en tröskeldos på ca 1 000 mSv (det gäller vid kortidsbestrålning av hela kroppen). Vid 6 000 mSv är chansen att överleva liten. Kurvans utseende beror på möjligheterna att ge effektiv behandling.

Vid cancerterapi förekommer mångdubbelt större doser, men bestrålningen är då koncentrerad till området kring tumören.
Sena effekter
Utöver de akuta effekterna har man också funnit att risken för cancer ökar.
Denna ökning märks först lång tid efter bestrålningen — vi talar därför om sena effekter.
Latentiden för fasta tumörer är i allmänhet minst tio år, men för leukemiern kan den var så kort som två år (figur 5).
Leukemiriskens är som störst omkring tio år efter bestrålningen och har klingat av efter trettio år.
För andra cancerformer förefaller den att fortsätta öka i proportion till "normal", icke strålningsframkallad cancer.
Utgångspunkten för cancerutvecklingen kan vara en enstaka skadad cell, men det är många faktorer som måste samverka för att cancer skall uppstå.
Man talar därför också om stokastiska (= slumpmässiga) effekter.

Ingen doströskel
På grund av de komplicerade mekanismerna för canceruppkomst kan man inte vänta sig något enkelt samband mellan stråldos och cancerrisk.
Men man kan heller inte anta att det finns en doströskel under vilken risken är noll.
Den längsta engångsdos där man klart kunnat påvisa ökad risk för cancer är strast under 100 mSv.
Ökningen är också tydlig bland de överlevande från Hiroshima och Nagasaki, som fick en medeldos på 300 mSv: av 40 000 besträlade personer hade fram till 1985 ca 400 dött i cancer som måste tillskrivas strålningen.

I de allra flesta sammanhang där människor utsätts för strålning, och där de känner oro, är doserna mycket mindre än så, eller mycket mera utdragna i tiden.

Figur 6 visar ungefärliga doser vid några diagnosstiska röntgenundersökningar. De varierar mellan några tiondels och ca tio millisivert.

Samband stråldos/cancerrisk
Trots att det gjorts omfattande studier har det inte hittills inte framkommit några klara belägg för ökad cancerrisk vid så pass låga doser.
Om en studie visar ökad risk (och det är dessa som uppmärksammas i massmedia), så finns det oftast andra som ger motsatt resultat.
Orsaken är att en eventuell strålningseffekt är så liten att den överskuggas av andra hälsoeffekter som forskarna har svårt att ta med i beräkningen. Det kan t.ex vara skillnader i mat- och rökvanor eller i boendemiljö, som alla kan ge stora utslag när det gäller cancerrisken.
Internationella strålskyddscommissionen ICRP räknar med att cancerrisken är proportionell mot stråldosen. Detta är välbevisat vid höga doser.
ICRP antar att ett linjärt samband råder också vid låga doser, från ca 50 mSv ner till noll, där det saknas experimentella belägg.
Men i lågadosområdet räknar man med att proportionalitetskonstanten bara är halften så stor som vid högre doser (figur 7).

Enligt ICRP ökar en stråldos på 1 mSv risken att dö i cancer med 0,005 procentenhet i en genomsnittsbefolkning.
Detta kan jämföras med att ca 20 % dör i cancer av andra orsaker.

Kollektiv risk
Vad är värre: om några få människor får en relativt hög stråldos, eller om många får en liten stråldos?
Om t.ex 200 människor vardera får 100 mSv, leder detta enligt ICRP till ett extra dödsfall i cancer.
Det är precis detsamma som man räknar med om istället 20 000 människor får vardera 1 mSv (figur 8).

Bakgrund

Typiska doser vid olika röntgenundersökningar

![Diagram](image)

![Diagram](image)

Figur 2. Effektiva doser vid olika röntgenundersökningar. Dosen vid samma typ av undersökning kan variera mycket från sjukhus till sjukhus.

De värden som ges här är medelvärden från Storbritannien enligt brittiska strålskyddsmyndigheten. Utvecklingen går mot allt lägre doser.

![Diagram](image)

Figur 3. Risken för död i strålninginducerad cancer som funktion av stråldosen, enligt ICRP. För höga doser har man visat att dödsrisken är proportionell mot dosen (övre streckade linjen).

For låga doser finns inga experimentella belägg för kurvens förlöp. ICRP antar proportionalitet också där, men med en proportionalitetskonstant som bara är hälften så stor (nedre streckade linjen).
Naturligtvis skulle vi alla hellre tillhöra den stora gruppen, där den individuella risken är 100 gånger mindre.

Men för samhället och myndigheterna är det i båge fallen fråga om ett människoliv, likvärdigt i båge fallen:

den kollektiva eller samhälleliga risken är dennesamma trots att den individuella risken skiljer sig betydligt.

Det kollektiva riskbegreppet är ovant för de flesta. Det gjorde att många kom att uppfatta myndigheternas agerande efter Tjernobyl som inkonsekvent och föga trovärdigt.

Å ena sidan infördes diverse besvärliga försiktighetsåtgärder, t ex livsmedelsrestraktioner, å andra sidan försäkrade man att ingen behövde vara orolig. Förklaringen var att åtgärderna betingades av den kollektiva risken, samtidigt som den individuella risken var låg för alla.

Genetiska skador

Om en cell som skadats av strålning är en köns cell som deltar i en befruktning, kan skadan föras vidare till barnet.

Men kromosomskador ger sällan märkbara skador hos barnen. En orsak är att varje individ i sina celler har en dubbel uppsättning kromosomer, en från vardera föräldern.

Om en kromosom är skadad på något sätt, tar vanligtvis den motsvarande friska kromosomen över. För att skadan skall visa sig, krävs i allmänhet att samma defekt årsas från båda föräldrarna.

Genetiska skador på grund av strålning har man aldrig med säkerhet kunnat påvisa hos människor, inte ens efter atombombningarna i Japan.

Man vet att de bör finnas där, men de har inte gått att upptäcka bland de andra genetiska avvikelsena i befolkningen.

Risken för strålningsskador är alltså allt dess mer gevalet att en människa skadning skall utgöras av en radonexponering.

Fosterskador

Liksom många andra skadliga agens kan strålning förknippas med fosterskador. Ett foster är en organism i snabb tillväxt och därför särskilt känsligt.

Den typ av fosterskada som kunnat konstateras efter atombombningarna i Japan är mental efterblivenhet. Den har drabbat barn till mödrar som var i 10:e-17:e graviditetsveckan vid bombningen. Risken befanns vara 40% vid 1 000 mSv.

Det är tveksamt om skadan kan inrättas vid dödsfall under ett par hundra mSv.

I den medicinska litteraturen har det rapporterats fall där barn föttts med svårare missbildningar efter det att modern av misstag fyllt strålbehandling i den tidiga graviditeten.

I den civilbefolkningen i f.d Sovjetunionen som drabbades varst på nedfallet efter Tjernobyl var inte doserna så höga att man kunde vänta sig en ökning av missbildningar hos barn.

Man ser läsorna att detta följer i dessa områden har man inte heller sett någon sådan ökning.

ICRP: Risken för cancerdöd = 0,005 % per millisievert

- 200 människor
 - får varda 100 mSv
 - 200 x 100 x 0.005 % = 1 cancerdödsfall

- 20 000 människor
 - får varda 1 mSv
 - 20 000 x 1 x 0.005 % = 1 cancerdödsfall

Individuella risken 100 gånger mindre men kollektiva risken densamma

Figuur 8. En förhållandevis hög strål dose till ett fåtal människor ger samma kollektiva risk som en låg dos till många människor.

Varifrån får vi våra stråldoser?

- **Strålning i boendetillgång** ca 65%
- **Medicinsk strålning** ca 20%
- **Naturlig bakgrundsstrålning** ca 15%
- **Övriga strålkällor** ca 1%

Figur 9. Dostfördelen 940905, enligt SSI. Genomsnittssvensken får ca 65% av sin årliga strålning från radon i bostaden, 20% från den naturliga bakgrundsstrålningen och 15% från medicinsk diagnos.
Den naturliga bakgrunden

Varje svensk får i genomsnitt en stråldos på 1 mSv per år från den naturliga strålningen – den s k bakgrundstrålningen. Den kommer från radioaktiva ämnen i marken, från kärnreaktioner i jorden och från radioaktivt kadium och kol som lagras i våra egna kroppar.

I trakter där marken är särskilt rik på radioaktiva mineraler, t ex i bohusgranit och viss skiffer, är bakgrundsdosen högre. Inom Sverige kan det röra sig om ungefär det dubbla jämfört med genomsnittet.

Några skillnader i hälstiltständ, som kan tillskrivas skillnaderna i naturlig stråldos, har inte kunnat påvisas.

Radon i bostäder

Det största dosbidraget får vi i Sverige från radonet i våra bostäder. Genomsnittsdosen är ungefär 3 mSv per år, men i somliga hus kan dosen bli större än korkordningarna större.

Radon är en naturligt radioaktiv ädelgas* som bildas ur uran (se faktaruta 1). Radonet är kortlivat och bildar så k allaradonotetrar. Både radonet och ett flertal radonotetrar är alfastrålande som kan välja utom de kommer in i kroppen.

Som ädelgas har radonet svårt att bindas kemiskt. När man andas in det följer det med utandningslufven ut igen utan att fasta i lungorna.

Värre är det med radonotetrarna. De binds vid dammpartiklar i luften som kan bli kvar i lungorna längre eller kortare tid.

Alfastrålningen kan då öka risken för lungcancer.

* Även om radon är ett naturligt radioaktivt ämne brukar radondosen inte räknas in i den naturliga bakgrundsdosen eftersom den är starkt beroende av bostädernas beskaffenhet.

Ökad risk för rökare

Mycket tyder på att det är rökare som ligger den största risken.

Lungans flimmerhår maturerar hela tiden fram ett slimskikt som transportrar bort dammpartiklar och som dessutom skärmar av alfastrålingen.

I en rökares lungor kan flimmerhären ha brutits ner så att radonotetrar kan hamna direkt på lungvävnaden och fastnar där.

Eftersom strådoser från radon och radonotetrar i stort sett är begränsade till lungorna, innebär radonet ingen särskild risk i samband med graviditet.

Medicinska och andra strådoser

Efter radonet och den naturliga bakgrundstrålningen är det den mediciska bestrålningen som ger genomsnittssvensken det största dosbidraget, nämligen omkring 0,6 mSv per år. Se också figur 6. För dem som bor nära kärnkraftverk har myndigheterna satt en dosgräns på en tiofot av den naturliga bakgrunden, dvs 0,1 mSv per år. I praktiken ligger doserna på en hundradels mSv och lägre.

I en del yrken får man större strådoser än genomsnittssvensken. En pilot t ex, som flyger på högohöjdutsatt, kan från den kosmiska strålningen få en årlig dos på 7 mSv.

Ett strålingsarbete – det gäller t ex anställda vid kärnkraftverk eller på sjukhusens radiologiska avdelningar – har myndigheterna satt den övre gränsen på 50 mSv per år, förutsatt att det är fråga om enstaka år.

Det är ytterst sällan som någon kommer i närheten av denna gräns.

Kärnkraftolyckan i Tjernobyl 1986 ledde till radioaktivt nedfall också i Sverige. Särskilt drabbades bland områdena kring Gävle och Sundsvall, där doserna det första året blev ca 3 mSv. Genomsnittet för hela landet beräknades till 0,2 mSv.

Åren därefter har doserna blivit mycket lägre, även om vissa speciella livsmedel – vilt, insjöfisk, svamp, skogsbär – i de mest utsatta områdena fortsätter att ligga över gränsvärdena för det långlivade cesium-137 (se faktaruta 3.)

Kunskapen den bästa rådgivaren

Joniserande strålning har alltid funnits i vår naturliga livsmiljö.

De senaste hundra åren har vi utvecklat teknik som kan ge oss stråldoser utöver de naturliga, och många människor känner oro för strålning, trots att det för de allra flesta fortfarande är den naturliga stråldosen som dominerar.

Det är självdigt att strålning måste hanteras med respekt, men okunskap och vanföreställningar kan göra att vi plågar oss i onödan av och avstår från stora förde-

Som alltid är kunskap den bästa rådgivaren.

Evelyn Sokolowski

Per-Åke Dilsellius, tekn. líc. Sydkraft AB
Monika Elborn, fil. kand, AB6 Atom AB
Monica Gustafsson, docent, IAEA, WIEN
Ingermar Lindholm, tekn. líc. S K B
Gustaf Löwenhielm, tekn. dr. Vattenfall AB
Anders Pechan, utredningssekreterare, Analysegruppen
Agnete Rising, fil. kand, Vattenfall AB
Evelyn Sokolowski, docent, K S U
Erik Söderman, civil. ing. ES-Konsult AB
Gunnar Wallinder, professor
Carl-Erik Wikdahl, civil. ing. Energiforum AB
Några naturligt radioaktiva ämnen

Uran-238, halveringstid 4,5 miljarder år. Sönderfaller i många steg, med bly som stabil slutprodukt. Mellanprodukter är bl.a. radium-226, halveringstid 1620 år, och radon-222, halveringstid 3,8 dygn.

Kalium-40, halveringstid 1,4 miljarder år. Tas upp och lagras i människokroppen tillsammans med stabilt kalium.

Kol-14, halveringstid 5 600 år. Bildas hela tiden genom kosmisk strålning i atmosfären, där det råder jämvikt mellan nybildning och sönderfall. Tillförs näringskedjorna som koldioxid och finns därfor i levande organismer.

En vuxen människas totala naturliga aktivitet är ca 7 000 becquerel, varav 4 000 becquerel kalium-40.

Några storheter och enheter

Absorberad dos anger den energi som strålningen avsätter per kilogram kroppsvävänd. Enheten är "gray" (Gy). 1 Gy = 1 joule/kg. (En äldre enhet som fortfarande används i vissa länder är "rad". 1 rad = 0,01 gray.)

Ekivalent dos, ofta kallad "stråldos", är absorberad dos, korrigerad för olika strålningsbiologiska verkan. Enheten är "sievert" (Sv). 1 Sv = 1 joule/kg. (En äldre enhet är "rem". 1 rem = 0,01 Sv.)

För beta- och gammastrålning är absorberad och ekivalent dos numeriskt lika.

Kollektivdos är summan av stråldoserna för alla individer som bestrålas av en viss strålkälla eller verksamhet. Kollektivdosen är ett mått på samhällsrisken med strålkällan eller verksamheten. Enheten är "sievert".

För att markerar kollektivdosis används ofta "man-sievert".

Aktivitet anger antalet atomkärnor i ett radioaktivt ämne som sönderfaller per tidenhet. Enheten är "becquerel" (Bq). 1 Bq = 1 sönderfall per sekund.

Det finns inget generellt samband mellan aktivitet och stråldos.

Doser i Sverige från Tjernobyl

Nedfallet i Sverige från Tjernobyl blev störst där det råkade regna när det radioaktiva mолнor passerade. Det var kring Gävle och Sundsvall. Dosen det första året efter olyckan blev ca 3 mSv i de mest drabbade områdena.

Sedan dess har årsdoserna minskat betydligt. Detta beror på att kortlivade radioaktiva ämnen, såsom jod-131, sönderfallit och att långlivade försvarit ur de flesta ekosystem.

Det ämne som fortfarande kan vålla problem är cesium-137 (halveringstid 30 år).

Sysselsatt i mager skogsmark förblir cesiet tillgängligt för växterna och därmed för djuren. Avrinningen från sådana områden kan leda till att cesiet ansamlas i insjöars sediment och tas upp av fisk.

Livsmedel med hög cesiumhalt är därför här och svamp, vilt och insjöfisk. Gränsvärden har satts till 1 500 Bq per kg.

Cesium som tagits upp i kroppen utsändras igen inom något år ("biologisk halveringstid" 70 dagar).

En "rejäl portion" (300 g) livsmedel på gränsvärden ger en dos på 0,006 mSv. Att varje dag under ett år åta en sådan portion ger alltså en årsdos på drygt 2 mSv.

Kärnkraftsäkerhet och Utbildning AB (KSU) ägs av de svenska kraftföretagen:

OKG AB, med kärnkraftverket i Oskarshamn
Sydkraft AB, med kärnkraftverket i Barsebäck
Vattenfall AB, med kärnkraftverken i Forsmark och Ringhals

KSU driver säkerhetsfrågor som lämpar sig för samordnande insatser från ågarföretagen. Främst gäller det grundutbildning och årlig återutbildning av kraftverkens driftpersonal i fullskalasimulatörer vid huvudentläggningen i Nyköping. Simulatorerna återskapar så naturtagna förlopp som möjligt av processerna i de svenska kärnkraftverken.

Därtöver ges högre teoretisk utbildning i kärnkraftteknik på högskolenivå och dåröver.

KSU utvärderar också inträffade störningar såväl i Sverige som utomlands. Stockholmskontoret är den svenska länken i flera internationellt organiserade system för utbyte av driftfarenheter:

INPO (Institute of Nuclear Power Operation)
WANO (World Association of Nuclear Operators).

Verksamhetens innehål ger även grund för samhällsinformation om kärnkraftsäkerhet, ioniserande strålning samt riskämnesförelser mellan olika energiås. Detta sker efter utvärdering av en särskild analysgrupp.